Skip to main contentIBM Quantum Documentation Mirror

Drag

class qiskit.pulse.library.Drag(duration, amp, sigma, beta, angle=0.0, name=None, limit_amplitude=None)

Bases: object

The Derivative Removal by Adiabatic Gate (DRAG) pulse is a standard Gaussian pulse with an additional Gaussian derivative component and lifting applied.

It can be calibrated either to reduce the phase error due to virtual population of the 2|2\rangle state during the pulse or to reduce the frequency spectrum of a standard Gaussian pulse near the 12|1\rangle\leftrightarrow|2\rangle transition, reducing the chance of leakage to the 2|2\rangle state.

g(x)=exp(12(xduration/2)2sigma2)g(x)=A×g(x)g(1)1g(1)f(x)=g(x)×(1+1j×beta×(xduration/2sigma2)),0x<duration\begin{aligned} g(x) &= \exp\Bigl(-\frac12 \frac{(x - \text{duration}/2)^2}{\text{sigma}^2}\Bigr)\\ g'(x) &= \text{A}\times\frac{g(x)-g(-1)}{1-g(-1)}\\ f(x) &= g'(x) \times \Bigl(1 + 1j \times \text{beta} \times \Bigl(-\frac{x - \text{duration}/2}{\text{sigma}^2}\Bigr) \Bigr), \quad 0 \le x < \text{duration} \end{aligned}

where g(x)g(x) is a standard unlifted Gaussian waveform, g(x)g'(x) is the lifted Gaussian waveform, and A=amp×exp(i×angle)\text{A} = \text{amp} \times \exp\left(i\times\text{angle}\right).

References

  1. Gambetta, J. M., Motzoi, F., Merkel, S. T. & Wilhelm, F. K. Analytic control methods for high-fidelity unitary operations in a weakly nonlinear oscillator. Phys. Rev. A 83, 012308 (2011).

  2. F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K. Wilhelm Phys. Rev. Lett. 103, 110501 – Published 8 September 2009.

Deprecated since version 1.3

The class qiskit.pulse.library.symbolic_pulses.Drag is deprecated as of Qiskit 1.3. It will be removed in Qiskit 2.0. The entire Qiskit Pulse package is being deprecated and will be moved to the Qiskit Dynamics repository: https://github.com/qiskit-community/qiskit-dynamics


Attributes

alias

Default value: 'Drag'