ExcitationPreserving
class qiskit.circuit.library.ExcitationPreserving(num_qubits=None, mode='iswap', entanglement='full', reps=3, skip_unentangled_qubits=False, skip_final_rotation_layer=False, parameter_prefix='θ', insert_barriers=False, initial_state=None, name='ExcitationPreserving', flatten=None)
Bases: TwoLocal
The heuristic excitation-preserving wave function ansatz.
The ExcitationPreserving
circuit preserves the ratio of , and states. To this end, this circuit uses two-qubit interactions of the form
for the mode 'fsim'
or with for the mode 'iswap'
.
Note that other wave functions, such as UCC-ansatzes, are also excitation preserving. However these can become complex quickly, while this heuristically motivated circuit follows a simpler pattern.
This trial wave function consists of layers of rotations with 2-qubit entanglements. The entangling is creating using rotations and optionally a controlled-phase gate for the mode 'fsim'
.
See RealAmplitudes
for more detail on the possible arguments and options such as skipping unentanglement qubits, which apply here too.
The rotations of the ExcitationPreserving ansatz can be written as
Examples
>>> ansatz = ExcitationPreserving(3, reps=1, insert_barriers=True, entanglement='linear')
>>> print(ansatz.decompose()) # show the circuit
┌──────────┐ ░ ┌────────────┐┌────────────┐ ░ ┌──────────┐
q_0: ┤ RZ(θ[0]) ├─░─┤0 ├┤0 ├─────────────────────────────░─┤ RZ(θ[5]) ├
├──────────┤ ░ │ RXX(θ[3]) ││ RYY(θ[3]) │┌────────────┐┌────────────┐ ░ ├──────────┤
q_1: ┤ RZ(θ[1]) ├─░─┤1 ├┤1 ├┤0 ├┤0 ├─░─┤ RZ(θ[6]) ├
├──────────┤ ░ └────────────┘└────────────┘│ RXX(θ[4]) ││ RYY(θ[4]) │ ░ ├──────────┤
q_2: ┤ RZ(θ[2]) ├─░─────────────────────────────┤1 ├┤1 ├─░─┤ RZ(θ[7]) ├
└──────────┘ ░ └────────────┘└────────────┘ ░ └──────────┘
>>> ansatz = ExcitationPreserving(2, reps=1, flatten=True)
>>> qc = QuantumCircuit(2) # create a circuit and append the RY variational form
>>> qc.cry(0.2, 0, 1) # do some previous operation
>>> qc.compose(ansatz, inplace=True) # add the excitation-preserving
>>> qc.draw()
┌──────────┐┌────────────┐┌────────────┐┌──────────┐
q_0: ─────■─────┤ RZ(θ[0]) ├┤0 ├┤0 ├┤ RZ(θ[3]) ├
┌────┴────┐├──────────┤│ RXX(θ[2]) ││ RYY(θ[2]) │├──────────┤
q_1: ┤ RY(0.2) ├┤ RZ(θ[1]) ├┤1 ├┤1 ├┤ RZ(θ[4]) ├
└─────────┘└──────────┘└────────────┘└────────────┘└──────────┘
>>> ansatz = ExcitationPreserving(3, reps=1, mode='fsim', entanglement=[[0,2]],
... insert_barriers=True, flatten=True)
>>> print(ansatz.decompose())
┌──────────┐ ░ ┌────────────┐┌────────────┐ ░ ┌──────────┐
q_0: ┤ RZ(θ[0]) ├─░─┤0 ├┤0 ├─■──────░─┤ RZ(θ[5]) ├
├──────────┤ ░ │ ││ │ │ ░ ├──────────┤
q_1: ┤ RZ(θ[1]) ├─░─┤ RXX(θ[3]) ├┤ RYY(θ[3]) ├─┼──────░─┤ RZ(θ[6]) ├
├──────────┤ ░ │ ││ │ │θ[4] ░ ├──────────┤
q_2: ┤ RZ(θ[2]) ├─░─┤1 ├┤1 ├─■──────░─┤ RZ(θ[7]) ├
└──────────┘ ░ └────────────┘└────────────┘ ░ └──────────┘
The excitation_preserving()
function constructs a functionally equivalent circuit, but faster.
The class qiskit.circuit.library.n_local.excitation_preserving.ExcitationPreserving
is deprecated as of Qiskit 2.1. It will be removed in Qiskit 3.0. Use the function qiskit.circuit.library.excitation_preserving instead.
Parameters
- num_qubits (int | None) – The number of qubits of the ExcitationPreserving circuit.
- mode (str) – Choose the entangler mode, can be ‘iswap’ or ‘fsim’.
- reps (int) – Specifies how often the structure of a rotation layer followed by an entanglement layer is repeated.
- entanglement (str |list[list[int]] | Callable[[int], list[int]]) – Specifies the entanglement structure. Can be a string (‘full’, ‘linear’ or ‘sca’), a list of integer-pairs specifying the indices of qubits entangled with one another, or a callable returning such a list provided with the index of the entanglement layer. See the Examples section of
TwoLocal
for more detail. - initial_state (QuantumCircuit | None) – A QuantumCircuit object to prepend to the circuit.
- skip_unentangled_qubits (bool) – If True, the single qubit gates are only applied to qubits that are entangled with another qubit. If False, the single qubit gates are applied to each qubit in the Ansatz. Defaults to False.
- skip_final_rotation_layer (bool) – If True, a rotation layer is added at the end of the ansatz. If False, no rotation layer is added. Defaults to True.
- parameter_prefix (str) – The parameterized gates require a parameter to be defined, for which we use
ParameterVector
. - insert_barriers (bool) – If True, barriers are inserted in between each layer. If False, no barriers are inserted.
- flatten (bool | None) – Set this to
True
to output a flat circuit instead of nesting it inside multiple layers of gate objects. By default currently the contents of the output circuit will be wrapped in nested objects for cleaner visualization. However, if you’re using this circuit for anything besides visualization its strongly recommended to set this flag toTrue
to avoid a large performance overhead for parameter binding. - name (str) –
Raises
ValueError – If the selected mode is not supported.
Attributes
parameter_bounds
Return the parameter bounds.
Returns
The parameter bounds.
name
Type: str
A human-readable name for the circuit.
Example
from qiskit import QuantumCircuit
qc = QuantumCircuit(2, 2, name="my_circuit")
print(qc.name)
my_circuit