Specify options
Package versions
The code on this page was developed using the following requirements. We recommend using these versions or newer.
qiskit[all]~=2.1.1
qiskit-ibm-runtime~=0.40.1
You can use options to customize the Estimator and Sampler primitives. This section focuses on how to specify Qiskit Runtime primitive options. While the interface of the primitives' run() method is common across all implementations, their options are not. Consult the corresponding API references for information about the qiskit.primitives and qiskit_aer.primitives options.
Notes about specifying options in the primitives:
SamplerV2andEstimatorV2have separate options classes. You can see the available options and update option values during or after primitive initialization.- Use the
update()method to apply changes to theoptionsattribute. - If you do not specify a value for an option, it is given a special value of
Unsetand the server defaults are used. - The
optionsattribute is thedataclassPython type. You can use the built-inasdictmethod to convert it to a dictionary.
Set primitive options
You can set options when initializing the primitive, after initializing the primitive, or in the run() method. See the precedence rules section to understand what happens when the same option is specified in multiple places.
Primitive initialization
You can pass in an instance of the options class or a dictionary when initializing a primitive, which then makes a copy of those options. Thus, changing the original dictionary or options instance doesn't affect the options owned by the primitives.
Options class
When creating an instance of the EstimatorV2 or SamplerV2 class, you can pass in an instance of the options class. Those options will then be applied when you use run() to perform the calculation. Specify the options in this format: options.option.sub-option.sub-sub-option = choice. For example: options.dynamical_decoupling.enable = True
Example:
SamplerV2 and EstimatorV2 have separate options classes (EstimatorOptions and SamplerOptions).
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_runtime import EstimatorV2 as Estimator
from qiskit_ibm_runtime.options import EstimatorOptions
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
options = EstimatorOptions(
resilience_level=2,
resilience={"zne_mitigation": True, "zne": {"noise_factors": [1, 3, 5]}},
)
# or...
options = EstimatorOptions()
options.resilience_level = 2
options.resilience.zne_mitigation = True
options.resilience.zne.noise_factors = [1, 3, 5]
estimator = Estimator(mode=backend, options=options)Dictionary
You can specify options as a dictionary when initializing the primitive.
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_runtime import EstimatorV2 as Estimator
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
# Setting options during primitive initialization
estimator = Estimator(
backend,
options={
"resilience_level": 2,
"resilience": {
"zne_mitigation": True,
"zne": {"noise_factors": [1, 3, 5]},
},
},
)Update options after initialization
You can specify the options in this format: primitive.options.option.sub-option.sub-sub-option = choice to take advantage of auto-complete, or use the update() method to make bulk updates.
The SamplerV2 and EstimatorV2 options classes (EstimatorOptions and SamplerOptions) do not need to be instantiated if you are setting options after initializing the primitive.
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_runtime import EstimatorV2 as Estimator
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
estimator = Estimator(mode=backend)
# Setting options after primitive initialization
# This uses auto-complete.
estimator.options.default_shots = 4000
# This does bulk update.
estimator.options.update(
default_shots=4000, resilience={"zne_mitigation": True}
)Run() method
The only values you can pass to run() are those defined in the interface. That is, shots for Sampler and precision for Estimator. This overwrites any value set for default_shots or default_precision for the current run.
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_runtime import SamplerV2 as Sampler
from qiskit.circuit.library import random_iqp
from qiskit.transpiler import generate_preset_pass_manager
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
circuit1 = random_iqp(3)
circuit1.measure_all()
circuit2 = random_iqp(3)
circuit2.measure_all()
pass_manager = generate_preset_pass_manager(
optimization_level=3, backend=backend
)
transpiled1 = pass_manager.run(circuit1)
transpiled2 = pass_manager.run(circuit2)
sampler = Sampler(mode=backend)
# Default shots to use if not specified in run()
sampler.options.default_shots = 500
# Sample two circuits at 128 shots each.
sampler.run([transpiled1, transpiled2], shots=128)
# Sample two circuits with different numbers of shots.
# 100 shots is used for transpiled1 and 200 for transpiled.
sampler.run([(transpiled1, None, 100), (transpiled2, None, 200)])Output:
<RuntimeJobV2('d2qkd39olshc73bmarsg', 'sampler')>
Special cases
Resilience level (Estimator only)
The resilience level is not actually an option that directly impacts the primitive query, but specifies a base set of curated options to build off of. In general, level 0 turns off all error mitigation, level 1 turns on options for measurement error mitigation, and level 2 turns on options for gate and measurement error mitigation.
Any options you manually specify in addition to the resilience level are applied on top of the base set of options defined by the resilience level. Therefore, in principle, you could set the resilience level to 1, but then turn off measurement mitigation, although this is not advised.
In the following example, setting the resilience level to 0 initially turns off zne_mitigation, but estimator.options.resilience.zne_mitigation = True overrides the relevant setup from estimator.options.resilience_level = 0.
from qiskit_ibm_runtime import EstimatorV2, QiskitRuntimeService
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
estimator = EstimatorV2(backend)
estimator.options.default_shots = 100
estimator.options.resilience_level = 0
estimator.options.resilience.zne_mitigation = TrueShots (Sampler only)
The SamplerV2.run method accepts two arguments: a list of PUBs, each of which can specify a PUB-specific value for shots, and a shots keyword argument. These shot values are a part of the Sampler execution interface, and are independent of the Runtime Sampler's options. They take precedence over any values specified as options in order to comply with the Sampler abstraction.
However, if shots is not specified by any PUB or in the run keyword argument (or if they are all None), then the shots value from the options is used, most notably default_shots.
To summarize, this is the order of precedence for specifying shots in the Sampler, for any particular PUB:
- If the PUB specifies shots, use that value.
- If the
shotskeyword argument is specified inrun, use that value. - If
num_randomizationsandshots_per_randomizationare specified astwirlingoptions, shots are the product of those values. - If
sampler.options.default_shotsis specified, use that value.
Thus, if shots are specified in all possible places, the one with highest precedence (shots specified in the PUB) is used.
Precision (Estimator only)
Precision is analogous to shots, described in the previous section, except that the Estimator options contain both default_shots and default_precision. In addition, because gate-twirling is enabled by default, the product of num_randomizations and shots_per_randomization takes precedence over those two options.
Specifically, for any particular Estimator PUB:
- If the PUB specifies precision, use that value.
- If the precision keyword argument is specified in
run, use that value. - If
num_randomizationsandshots_per_randomizationare specified astwirlingoptions (enabled by default), use their product to control the amount of data. - If
estimator.options.default_shotsis specified, use that value to control the amount of data. - If
estimator.options.default_precisionis specified, use that value.
For example, if precision is specified in all four places, the one with highest precedence (precision specified in the PUB) is used.
Precision scales inversely with usage. That is, the lower the precision, the more QPU time it takes to run.
Commonly used options
There are many available options, but the following are the most commonly used:
Shots
For some algorithms, setting a specific number of shots is a core part of their routines. Shots (or precision) can be specified in multiple places. They are prioritized as follows:
For any Sampler PUB:
- Integer-valued shots contained in the PUB
- The
run(...,shots=val)value - The
options.default_shotsvalue
For any Estimator PUB:
- Float-valued precision contained in the PUB
- The
run(...,precision=val)value - The
options.default_shotsvalue - The
options.default_precisionvalue
Example:
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_runtime import SamplerV2 as Sampler
from qiskit.circuit.library import random_iqp
from qiskit.transpiler import generate_preset_pass_manager
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
circuit1 = random_iqp(3)
circuit1.measure_all()
circuit2 = random_iqp(3)
circuit2.measure_all()
pass_manager = generate_preset_pass_manager(
optimization_level=3, backend=backend
)
transpiled1 = pass_manager.run(circuit1)
transpiled2 = pass_manager.run(circuit2)
# Setting shots during primitive initialization
sampler = Sampler(mode=backend, options={"default_shots": 4096})
# Setting options after primitive initialization
# This uses auto-complete.
sampler.options.default_shots = 2000
# This does bulk update. The value for default_shots is overridden if you specify shots with run() or in the PUB.
sampler.options.update(
default_shots=1024, dynamical_decoupling={"sequence_type": "XpXm"}
)
# Sample two circuits at 128 shots each.
sampler.run([transpiled1, transpiled2], shots=128)Output:
<RuntimeJobV2('d2qkd61olshc73bmarvg', 'sampler')>
Maximum execution time
The maximum execution time (max_execution_time) limits how long a job can run. If a job exceeds this time limit, it is forcibly canceled. This value applies to single jobs, whether they are run in job, session, or batch mode.
The value is set in seconds, based on quantum time (not wall clock time), which is the amount of time that the QPU is dedicated to processing your job. It is ignored when using local testing mode because that mode does not use quantum time.
from qiskit_ibm_runtime import QiskitRuntimeService
from qiskit_ibm_runtime import EstimatorV2 as Estimator
service = QiskitRuntimeService()
backend = service.least_busy(operational=True, simulator=False)
estimator = Estimator(mode=backend)
estimator.options.max_execution_time = 2500Turn off all error mitigation and error suppression
You can turn off all error mitigation and suppression if you are, for example, doing research on your own mitigation techniques. To accomplish this, for EstimatorV2, set resilience_level = 0. For SamplerV2, no changes are necessary because no error mitigation or suppression options are enabled by default.
Example:
Turn off all error mitigation and suppression in Estimator.
from qiskit_ibm_runtime import EstimatorV2 as Estimator, QiskitRuntimeService
# Define the service. This allows you to access IBM QPU.
service = QiskitRuntimeService()
# Get a backend
backend = service.least_busy(operational=True, simulator=False)
# Define Estimator
estimator = Estimator(backend)
options = estimator.options
# Turn off all error mitigation and suppression
options.resilience_level = 0Next steps
- Find more details about the
EstimatorV2methods in the Estimator API reference. - Find more details about the
SamplerV2methods in the Sampler API reference. - Find details about how to configure error suppression and error mitigation.
- Decide what execution mode to run your job in.